

Blacktown Boys' High School 2022 Year 12 HSC Trial Examination

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- In Questions in Section II, show all relevant mathematical reasoning and/or calculations

Total marks: 100

Total marks: Section I – 10 marks (pages 3 – 10)

- Attempt Questions 1 − 10
- Allow about 15 minutes for this section

Section II – 90 marks (pages 11 - 40)

- Attempt Questions 11 32
- Allow about 2 hours and 45 minutes for this section

Assessor: K. Villanueva & X. Chirgwin

Student Name:	

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2022 Higher School Certificate Examination.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10.

A high school conducted a survey asking students what their favourite Summer sport was. The Pareto chart shows the data collected.

Favourite Summer Sport

What percentage of students chose soccer as their favourite sport?

- A. 10%
- B. 12%
- C. 36%
- D. 72%

The graph below shows the cost of making pizzas depending on the number of toppings and the amount of income made from their sale.

How many toppings need to be sold to break even?

- A. 0
- B. 2
- C. 5
- D. 8
- A jar of lollies contains 8 strawberry flavoured lollies and 9 apple flavoured lollies. Dianne takes two lollies at random. What is the probability that she takes two of the same flavour?
 - A. $\frac{1}{2}$
 - B. $\frac{9}{34}$
 - C. $\frac{8}{17}$
 - D. $\frac{145}{269}$

- 4 y = f(x) is an odd function. The value of $\int_{-a}^{a} f(x) dx$ is:
 - A. f(a)
 - $B. \qquad 2\int_0^a f(x)\,dx$
 - C. 0
 - D. a
- 5 The linear function f(x) = 5 x has range [-4, 5). The domain of the function is
 - A. (0,9]
 - B. (0,1]
 - C. [5, -4)
 - D. (-9,0)
- 6 The random variable, *X*, has a normal distribution with mean 12 and standard deviation 0.25. Which of the following corresponds to *X* is greater than 12.5?
 - A. P(Z < -1.5)
 - B. P(Z < 1)
 - C. $P(Z \ge 1.5)$
 - D. P(Z > 2)
- 7 The average rate of change of the function $f(x) = 3x^2 2\sqrt{x+1}$, between x = 0 and x = 3, is
 - A. 8
 - B. 25
 - C. $\frac{53}{9}$
 - $D \qquad \frac{25}{3}$

- In a group of 60 students, 26 students study Mathematics Advanced, 29 students study Biology, and 14 study both. Find the probability that a student studies Biology given that they study Mathematics Advanced.
 - A. $\frac{7}{30}$
 - B. $\frac{7}{20}$
 - C. $\frac{7}{13}$
 - D. $\frac{29}{40}$
- 9 The graph of is $y = \frac{x-2}{x-4}$ shown below.

- The values of x for which $\frac{x-2}{x-4} \le 3$ are:
- A. $x < 4, x \ge 5$
- B. $x \le 3$
- C. $2 \le x < 4$
- D. x < 1

The diagram below shows the graph of the gradient function y = f'(x) of the function y = f(x). For what values of x is the function y = f(x) increasing?

- A. x > 6
- B. 3 < x < 9
- C. x < 3, x > 6
- D. x > 9

End of Section I

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$2 + 4 =$$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A

 $C \bigcirc$

 $D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

1. $A \bigcirc$ ВО CO DO2. A O CO ВО DO 3. A O ВО CO DO 4. ВО A O CO DO 5. A O CO ВО DO 6. Λ ВО CO DO 7. A O ВО CO DO 8. A O CO ВО DO 9. A OВО CODO **10**. A O CO ВО DO

Mathematics Advanced Section II Answer Booklet 1

90 marks

Attempt Questions 11 – 32

Allow about 2 hours and 45 minutes for this section

Booklet 1 – Attempt Questions 11 – 23 (45 marks)

Booklet 2 – Attempt Questions 24 – 32 (45 marks)

Instructions

- Answer the Questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your response should include relevant mathematical reasoning and/or calculations
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

NAME:				
-------	--	--	--	--

Ou	estion	11	(2)	marks)
Vu.			1 —	man

Evaluate $\cot \frac{4\pi}{3} \times \sin \frac{5\pi}{4}$.	2
Question 12 (2 marks)	
Find the 19^{th} term of the given geometric series $2-6+18-54+\dots$	2
Question 13 (3 marks)	
Find the sum of the given arithmetic series. $9 + 16 + 23 + + 2963$	3

Question 14 (2 marks)

	$f(x) = -x^2 + 2x - 3$ and $g(x) = x^2 + 3$. Express $f(g(x))$ in the form of $f(x) = x^2 + c$, where a, b , and c are non-zero integers.	2
0 4		
	on 15 (4 marks)	
Differen	ntiate the following functions and simplify your answers where necessary.	
(a)	$y = e^{5x}\cos 3x$	2
(b)	$y = \frac{10x - 3}{x^2 + 1}$	2

Question 16 (4 marks)

т.	- 1
H1	ทศ

(a)	$\int \left(\frac{2}{x} + e^{2x}\right) dx$	2
(b)	$\int \frac{1}{(5x-7)^3} dx$	2
Questi	on 17 (3 marks)	
The cur	rve $y = f(x)$ has gradient function $f'(x) = 3x^2 - k$, where k is a constant.	
(a)	Find the value of k if the curve has a stationary point at $(-1,3)$.	1
(b)	Hence, find the equation of the curve $y = f(x)$.	2

Question 18 (6 marks)

The discrete random variable X has this probability distribution.

X	0	1	2	3	4
P(X=x)	0.2	k	0.1	k	0.1

(a)	Show that the value of k is 0.3.	1
(b)	Calculate the expected value and variance of X .	2
(c)	Find $P(X \le 1)$	1
(d)	Find $P(X > 1 \mid X \le 3)$	2

Question 19 (4 marks)

The bank has approved Raj's loan of \$70000 for him to get a new car. The bank charges interest at 0.85% per month. Raj pays \$2000 at the beginning of every month to pay off his loan.

The amount in the account immediately after the nth repayment can be determined using the recurrence relation

$$A_n = A_{n-1}(1.0085) - 2000,$$

where n = 1, 2, 3, ... and $A_0 = 70000$

(a)	Use the recurrence relation to find the amount of money in the account immediately after the third repayment.	2
(b)	Calculate the amount of interest added in the first three months.	2

Question 20 (4 marks)

Body mass index (BMI) is a measure that can be used to determine a person's healthy weight range. The following graph indicates z-scores of 'BMI-for age' for boys aged 5-19 years.

Question 21 (4 marks)

A set of data is collected by measuring the height and arm span of eight children. The graph shows a scatterplot of these measurements.

(a)	Calculate the value of Pearson's correlation coefficient, correct to four decimal places.	1
(b)	Hence describe the association between the height and arm span in terms of strength and direction.	1
(c)	Determine the equation of the least-squares regression line for this data. Round your values to two significant figures.	2

Question 22 (5 marks)

Manavdeep leaves island A in a boat and sails 164 km on a bearing of 070° to island B. He then sails on a bearing of 194° for 241 km to island C, as shown in the diagram.

- (a) Show that the size of $\angle ABC = 56^{\circ}$. 1

 (b) Show that the distance from island C to island A is approximately 202 km. 2
- (c) Manavdeep wants to sail from island *C* directly to island *A*. On what bearing should he sail? Give your answer to the nearest degree.

2

Question 23 (2 marks)

An object rolls 0.5 metres in the first second. Then each second after, it rolls by two hirds of the distance of its previous roll. How far will it roll altogether eventually?				

End of Question 23

Proceed to Booklet 2

Section II extra writing space
If you use this space, clearly indicate which question you are answering.

Section II extra writing space
If you use this space, clearly indicate which question you are answering.

Mathematics Advanced

Section II Answer Booklet 2

Booklet 2 – Attempt Questions 24 – 32 (45 marks)

Instructions

- Answer the Questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your response should include relevant mathematical reasoning and/or calculations
- Extra writing space is provided at the back of this booklet.
 If you use this space, clearly indicate which question you are answering.

NAME:	

Question 24 (6 marks)

Leonard and Howard start jobs at the beginning of the same year. Leonard's annual salary in the first year is \$53000 and increases by 3% at the beginning of each subsequent year. Howard's annual salary in the first year is \$59000 and increases by \$1500 at the beginning of each subsequent year.

annual s	at in the 15 th year, Leonard's annual salary is higher than Howard's alary.
•••••	
In the fir	est 15 years, how much in total, does Leonard earn?
• • • • • • • • • • • • • • • • • • • •	
•••••	
In which	year will Leonard start to earn a salary more than \$90000 a year?

Question 25 (4 marks)

A probability density function f(x) is given by

$$f(x) = \begin{cases} kx(5-x), & \text{if } 0 \le x \le 5\\ 0, & \text{if } x < 0, x > 5 \end{cases}$$

where k is a positive constant.

(a)	Show that $k = \frac{6}{125}$.	1
(b)	Determine the mode of $f(x)$.	1
(c)	Find $P(X > 3)$.	2

Question 26 (3 marks)

On any given day, the depth of water in a river is modelled by the function

$$h(t) = 14 + 8\sin\left(\frac{\pi t}{12}\right), 0 \le t \le 24$$

where h is the depth of water, in metres and t is the time, in hours, after 6 am.

(a)	Find the minimum depth of the water in the river.	1
(b)	Find the values of t for which $h(t) = 10$.	2

Question 27 (7 marks)

Consider the curve given by $y = x^3 - x^2 - x + 6$, for $-3 \le x \le 3$.

Find the coordinates of the stationary points and determine their nature.
Show that there is a point of inflection at $\left(\frac{1}{3}, \frac{151}{27}\right)$.

Question 27 continues on page 28

(c)	Sketch the curve for $-3 \le x \le 3$, showing all key features.	2
(d)	For what values of x is the curve decreasing and concaving up?	1

End of Question 27

Question 28 (4 marks)

A tank contains 50 litres of water. A tap at the base of the tank allows water to flow out at a rate proportional to the quantity of water still in the tank at that time, given by the equation $W = W_0 e^{-kt}$, where W is the amount of water in the tank and t is time in minutes. After 2 minutes, 10 litres of water has been released.

Show that $k = -\frac{1}{2} \ln \frac{4}{5}$.	2
How much water has been released from the tank after 10 minutes? Give your answer to the nearest litre.	2
	2
	2
	2
	2
	2
answer to the nearest litre.	2

Question 29 (5 marks)

The diagram shows the graph of $y = \sin x$ and $y = \sqrt{3}\cos x$, $0 \le x \le 2\pi$. The graphs intersect at points A and B.

(a) Show that point A has coordinates $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$.

(b) Find the coordinates of point B.

.....

Question 29 continues on page 31

Question 29 (continued)

(c)	Find the shaded area enclosed by the two graphs.	3

End of Question 29

Question 30 (7 marks)

A particle is moving in a straight line, starting from the origin. At time t seconds, the particle has displacement x metres from the origin and velocity v m/s. The displacement is given by $x = 2t - 3\log_e(t+1)$.

(a)	Find an expression for the velocity v .	1
(b)	Find the initial acceleration.	2
(c)	When does the particle come to rest?	2

Question 30 is continued on page 33

Question 30 (continued)

(d)	Find the distance travelled by the particle in the first three seconds. Answer correct to four decimal places.	2

End of Question 30

Question 31 (4 marks)

(a)	Show that $\frac{d}{dx} \left(\frac{1}{\sin x} \right) = -\cot x \csc x$.	2
(b)	Hence evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot x \csc x dx$. Give your answer in exact form.	2

Question 32 (5 marks)

(b)

A cylinder is inscribed in a cone of radius 9 cm and perpendicular height 25 cm.

((a)	Show that the perpendicular height h of the cylinder is given by
1	ω,	given by

 $h = \frac{25(9-r)}{9},$

1

1

where r is the radius of the cylinder.

.....

Show that the volume of the cylinder is given by

$$V = \frac{25\pi}{9}(9r^2 - r^3)$$

.....

.....

Question 32 is continued on page 36

-	Hence, find the maximum possible exact volume of this cylinder.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

End of paper

2022 Year 12 Mathematics Advanced AT4 Solutions Section 1		
Q1	B 88% – 76% = 12%	1 Mark
Q2	B Break even is the point of intersection	1 Mark
Q3	Two of the same flavours: two strawberries or two apples $P(SS) + P(AA) = \frac{8}{17} \times \frac{7}{16} + \frac{9}{17} \times \frac{8}{16} = \frac{8}{17}$	1 Mark
Q4	c $f(x) \text{ is an odd function}$ $\int_{-a}^{a} f(x) dx = 0$	1 Mark
Q5	A 5-x = -4 $5 = 5-xx = 9$ $x = 0Domain: (0, 9]$	1 Mark
Q6	$z = \frac{12.5 - 12}{0.25} = 2$ $P(X > 12.5) = P(Z > 2)$	1 Mark
Q7	$f(0) = 3 \times 0^{2} - 2 \times \sqrt{0 + 1} = -2$ $f(3) = 3 \times 3^{2} - 2 \times \sqrt{3 + 1} = 23$ Average rate of change is $\frac{23 - (-2)}{3 - 0} = \frac{25}{3}$	1 Mark
Q8	Probability of a student that studies Biology given that they study Mathematics Advanced is $\frac{14}{26} = \frac{7}{13}$	1 Mark
Q9	Draw a horizontal straight line of $y=3$ on the original graph, look for sections of the original graph that is below the line $y=3$. Intersection of the two graphs is where $x=5$. $\therefore x < 4, x \ge 5$	1 Mark
Q10	D $f(x) \text{ is increasing if } f'(x) > 0$ $\therefore x > 9$	1 Mark

Section 2		
Q11	$\cot \frac{4\pi}{3} \times \sin \frac{5\pi}{4}$ $= \frac{1}{\tan \frac{4\pi}{3}} \times -\frac{1}{\sqrt{2}}$	2 Marks
	$\frac{\cot \frac{\pi}{3} \times \sin \frac{\pi}{4}}{4}$	Correct solution
	$=\frac{1}{1}\times\frac{1}{1}$	
	$\tan \frac{4\pi}{2}$ $\sqrt{2}$	1 Mark
	1 1 1	Correct exact value for
	$= \frac{1}{\sqrt{3}} \times -\frac{1}{\sqrt{2}}$ $= -\frac{1}{\sqrt{6}}$	$\sin\frac{5\pi}{4} \ or \ \cot\frac{4\pi}{3}$
	1	4 3
	$=-\frac{1}{\sqrt{6}}$	
	V 0	
Q12	a = 2, r = -3	2 Marks
	4	Correct solution
	$T_{19} = ar^{n-1}$	
	$T_{19} = 2 \times (-3)^{19-1}$	1 Mark
	$T_{19} = 774840978$	Identifies a and r
Q13	a = 9, d = 7	3 Marks
413	, w , w ,	Correct solution
	$T_n = a + (n-1)d$	551. 551 55141.511
	$2963 = 9 + (n-1) \times 7$	2 Marks
	n = 423	Finds $n = 423$ and
		attempts to find the
	$S_n = \frac{n}{2}(a+l)$	sum
	$S_n = \frac{n}{2}(a+l)$ $S_n = \frac{423}{2}(9+2963)$	
	$S_n = \frac{120}{2}(9 + 2963)$	1 Mark
	$S_n = 628578$	Finds
		$2963 = 9 + (n-1) \times 7$
Q14	$f(g(x)) = f(x^2 + 3)$	2 Marks
	$=-(x^2+3)^2+2(x^2+3)-3$	Correct solution
	$= -(x^4 + 6x^2 + 9) + 2x^2 + 6 - 3$	
	$=-x^4-4x^2-6$	1 Mark
		Shows $f(g(x))$ = $-(x^2 + 3)^2 + 2(x^2 + 3) - 3$
		= (x + 3) + 2(x + 3) - 3
Q15a	$y = e^{5x} \cos 3x$	2 Marks
	$\frac{dy}{dx} = e^{5x} \times -3\sin 3x + 5e^{5x} \times \cos 3x$ $\frac{dy}{dx} = -3e^{5x}\sin 3x + 5e^{5x}\cos 3x$	Correct solution
	$\frac{dx}{dx} = e^{-x} - 3 \sin 3x + 3e^{-x} \cos 3x$	
	$\frac{dy}{dx} = -3e^{5x}\sin 3x + 5e^{5x}\cos 3x$	1 Mark
	dx	Correct differentiation
		of e^{5x} or $\cos 3x$ and
0455	10v = 2	attempts product rule
Q15b	$y = \frac{10x - 3}{x^2 + 1}$	2 Marks Correct solution
	$(x^2 + 1) \times 10 - (10x - 3) \times 2x$	Correct Solution
	$y = \frac{(x^2 + 1)^2}{(x^2 + 1)^2}$	1 Mark
	$10x^2 + 10 - 20x^2 + 6x$	Correct quotient rule
	$y = \frac{1000 + 1000}{(x^2 + 1)^2}$	Solvest quotient raic
	$-10x^2 + 6x + 10$	
	$y = \frac{(x^2 + 1) \times 10 - (10x - 3) \times 2x}{(x^2 + 1)^2}$ $y = \frac{10x^2 + 10 - 20x^2 + 6x}{(x^2 + 1)^2}$ $y = \frac{-10x^2 + 6x + 10}{(x^2 + 1)^2}$	
Q16a	$\int \left(\frac{2}{-} + e^{2x}\right) dx$	2 Marks
	$\int \left(\frac{2}{x} + e^{2x}\right) dx$ $= 2\log_e x + \frac{1}{2}e^{2x} + C$	Correct solution
	$= 2 \log_a x + \frac{1}{-}e^{2x} + C$	
	2	1 Mark
		Correct integration of
		$\frac{2}{\pi}$ or e^{2x}
		X

Q16b	ſ 1	2 Marks
Q100	$\int \frac{1}{(5x-7)^3} dx$	Correct solution
	$=\int (5x-7)^{-3}dx$	
		1 Mark
	$= \frac{(5x-7)^{-2}}{-2\times 5} + C$	Demonstrates understanding of
		$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)}$
	$=\frac{1}{-10(5x-7)^2}+C$	$\int (ax+b)^n ax = \frac{1}{a(n+1)}$
Q17a	Stationery point at $(-1,3)$	1 Mark
	$f'(x) = 3x^2 - k$	Correct solution
	$ 0 = 3 \times (-1)^2 - k k = 3 $	
Q17b	$f(x) = \int (3x^2 - 3)dx$	2 Marks
	$f(x) = x^3 - 3x + C$	Correct solution
		1 Mark
	$3 = (-1)^3 - 3 \times (-1) + C$ $C = 1$	Finds $f(x) = x^3 - 3x + C$
	$f(x) = x^3 - 3x + 1$	
Q18a	0.2 + k + 0.1 + k + 0.1 = 1	1 Mark
4-00	2k = 0.6	Correct solution
	k = 0.3	
Q18b	$E(X) = 0 \times 0.2 + 1 \times 0.3 + 2 \times 0.1 + 3 \times 0.3 + 4 \times 0.1$	2 Marks
	E(X) = 1.8	Correct solution
	$E(X^2) = 0^2 \times 0.2 + 1^2 \times 0.3 + 2^2 \times 0.1 + 3^2 \times 0.3 + 4^2 \times 0.1$	1 Mark
	$E(X^2) = 5$	Correct $E(X)$ or $Var(X)$
	$Var(X) = E(X^2) - [E(X)]^2$	
	$Var(X) = 5 - 1.8^2$	
	Var(X) = 1.76	
Q18c	$P(X \le 1) = 0.2 + 0.3$	1 Mark
	$P(X \le 1) = 0.5$	Correct solution
Q18d	$P(X > 1 \mid X \le 3) = \frac{P(X > 1 \cap X \le 3)}{P(X \le 3)}$ $P(X > 1 \mid X \le 3) = \frac{P(X = 2) + P(X = 3)}{1 - P(X = 4)}$ $P(X > 1 \mid X \le 3) = \frac{0.1 + 0.3}{1 - 0.1}$ $P(X > 1 \mid X \le 3) = \frac{4}{9}$	2 Marks
	$P(X \ge 1 \mid X \le 3) = \frac{P(X \le 3)}{P(X \le 3)}$	Correct solution
	$P(X > 1 \mid X \le 3) = \frac{P(X = 2) + P(X = 3)}{1 - P(X = 4)}$	1 Mark
	$ \begin{array}{r} 1 - P(X = 4) \\ 0.1 + 0.3 \end{array} $	Shows
	$P(X > 1 \mid X \le 3) = \frac{1}{1 - 0.1}$	$P(X > 1 \cap X \le 3) = 0.4$
	$P(X > 1 \mid X \le 3) = \frac{4}{-}$	
	, , , , ,	
Q19a	$An = A_{n-1}(1.0085) - 2000$	2 Marks
	$A_1 = A_0 \times 1.0085 - 2000$	Correct solution
	$A_1 = 70000 \times 1.0085 - 2000 = 68595$	1 Mark
	$A_2 = A_1 \times 1.0085 - 2000$	Finds the correct value
	$A_2 = 68595 \times 1.0085 - 2000 = 67178.0575$	of A_1
	$A_3 = A_2 \times 1.0085 - 2000$	
	$A_3 = 67178.0575 \times 1.0085 - 2000 = 65749.0709 \dots$	
	$A_3 \approx 65749.07	

Q19b	Amount without interest in the first three months	2 Marks
	$= 70000 - 3 \times 2000 = 64000$	Correct solution
	Amount with interest in the first three months	1 Mark
	= \$65749.07	Finds amount without
	, , , , , , , , , , , , , , , , , , , ,	interest in the first
	Interest is $65749.07 - 64000 = 1749.07	three months
	interest is 03/49.07 - 04000 - \$1/49.07	three months
Q20a	12 years old	1 Mark
		Correct solution
Q20b	1 - 97.5% = 2.5%	1 Mark
	z = -2	Correct solution
	BMI = 13.5	correct solution
Q20c	z = 1	2 Marks
	$D(7 > 1) = \frac{1}{1} (1 - D(1 < 7 < 1))$	Correct solution
	$P(Z > 1) = \frac{1}{2} (1 - P(-1 \le Z \le 1))$ $P(Z > 1) = \frac{1}{2} (1 - 68\%) = 16\%$	
	1 - 1 = 1	1 Mark
	$P(Z > 1) = \frac{1}{2}(1 - 68\%) = 16\%$	Obtains $P(Z > 1) = 16\%$
	16% = 40 people	
	100% = 250 people	
Q21a	r = 0.984682	1 Mark
QZIG	$r \approx 0.9847$	Correct solution
	7 ~ 0.5047	Correct solution
Q21b	Positive and strong	1 Mark
		Correct solution
Q21c	$A = 36.617 \dots B = 0.7775 \dots$	2 Marks
Q	$A \approx 37$ $B \approx 0.78$	Correct solution
	Rounded to 2 significant figures	Correct solution
	Nounded to 2 significant rigares	1 Mark
	y = 0.78x + 37	
	y = 0.78x + 37	Correct A or B value
Q22a	$\angle ABC = 70^{\circ} - (194^{\circ} - 180^{\circ})$	1 Mark
QZZa	$\angle ABC = 56^{\circ}$	Correct solution
	ZADC - 30	Correct solution
Q22b	$AC^2 = 164^2 + 241^2 - 2 \times 164 \times 241 \times \cos 56^\circ$	2 Marks
	$AC = \sqrt{164^2 + 241^2 - 2 \times 164 \times 241 \times \cos 56^{\circ}}$	Correct solution
	$AC = \sqrt{104} + 241 - 2 \times 104 \times 241 \times \cos 30$ AC = 201.9255	
	$AC \approx 202 \text{ km}$	1 Mark
	$AC \sim 202 \text{ km}$	Correct use of cos rule
		correct use or cos rule
Q22c	sin∠ACB sin 56°	2 Marks
QZZC	$\frac{\sin 2\pi G B}{4GA} = \frac{\sin 3G}{200}$	
	164 202 sin 56°	Correct solution
	$\frac{\sin 2ACB}{164} = \frac{\sin 3C}{202}$ $\sin 2ACB = \frac{\sin 56^{\circ}}{202} \times 164$	
	$\angle ACB = 42.305 \dots$	1 Mark
		Correct value of $\angle ACB$
	$\angle ACB = 42^{\circ}$ (nearest degree)	
	Bearing from C to A is $360^{\circ} - [42^{\circ} - (194^{\circ} - 180^{\circ})] = 332^{\circ}$	
Q23	2	2 Marks
	$a = 0.5, r = \frac{2}{3}$	Correct solution
	0.5	11.11.11.11
	$S_{\infty} = \frac{0.5}{1 - \frac{2}{3}}$	1 Mark
		Correct substitution into
	$S_{\infty} = 1.5$ metres	
		the limiting sum
		formula

Q24a	Leonard	2 Marks
Q_ 10	a = 53000, r = 1.03	Correct solution
	$L_1 = 53000, L_2 = 53000 \times 1.03, L_3 = 53000 \times 1.03^2,$	
	$L_{15} = 53000 \times 1.03^{14}$	1 Mark
	$L_{15} = \$80167.25542 \dots = \80167.26	Correct value for
		Leonard or Howard
	Howard	
	a = 59000, d = 1500	
	$H_1 = 59000, H_2 = 59000 + 1500, H_3 = 59000 + 1500 \times 2,$	
	$H_{15} = 59000 + 1500 \times 14$ $H_{15} = 80000	
	$n_{15} = 60000	
	$L_{15} > H_{15}$	
Q24b	$53000 \times (1.03^{15} - 1)$	2 Marks
	$S_{15} = \frac{53000 \times (1.03^{15} - 1)}{1.03 - 1}$	Correct solution
	$S_{15} = $985742.435994 \dots$	
	$S_{15} = \$985742.44$	1 Mark
		Correct substitution into
	Lacon 1	the sum formula
Q24c	$53000 \times 1.03^{n-1} > 90000$	2 Marks
	90	Correct solution
	$1.03^{n-1} > \frac{90}{53}$	1 Mark
	55	Correct substitution into
	$(n-1)\ln 1.03 > \ln \left(\frac{90}{53}\right)$	the sum formula
	$(n-1)\ln 1.03 > \ln \left(\frac{1}{53}\right)$	
	(90)	
	$n-1 > \frac{\ln\left(\frac{90}{53}\right)}{\ln 1.03}$	
	$n-1 > \frac{1}{\ln 1.03}$	
	790 \	
	$n > \frac{\ln\left(\frac{90}{53}\right)}{\ln 1.03} + 1$	
	$n > \frac{1}{\ln 1.03} + 1$	
	10.01406	
	n > 18.91406	
	n = 19	
Q25a	C ⁵	1 Mark
Q230	$\int_{0}^{5} kx(5-x)dx = 1$ $k \int_{0}^{5} (5x - x^{2})dx = 1$	Correct solution
	$\begin{bmatrix} J_0 \\ c^5 \end{bmatrix}$	
	$k \mid (5x - x^2)dx = 1$	
	J ₀ [r23] ⁵	
	$k \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^5 = 1$	
	$\begin{bmatrix} 2 & 3 \end{bmatrix}_0$	
	$k \times \frac{125}{\epsilon} = 1$	
	6	
	$k \times \frac{125}{6} = 1$ $k = \frac{6}{125}$	
Q25b	The mode occurs at the maximum turning point of this concaving	1 Mark
Q230	down parabola.	Correct solution
	The two x intercepts are $x = 0$ and $x = 5$.	Soli Cot Solution
	Vertex occurs at	
	$x = \frac{0+5}{2} = 2.5$	
	2	
	$\therefore \text{ The mode of } f(x) \text{ is } x = 2.5$	

Q25c	$P(X > 3) = 1 - P(X \le 3)$	2 Marks
Q25C	$P(\lambda > 3) = 1 - P(\lambda \le 3)$	Correct solution
	$P(X > 3) = 1 - \frac{6}{125} \int_0^3 (5x - x^2) dx$	1 Mark
	$P(X > 3) = 1 - \frac{6}{125} \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^3$	$P(X > 3)$ $= 1 - \frac{6}{125} \int_{0}^{3} (5x - x^{2}) dx$
	$P(X > 3) = 1 - \frac{6}{125} \left[\frac{5 \times 3^2}{2} - \frac{3^3}{3} - 0 \right]$	$125 J_0 (3x - x) dx$
	$P(X > 3) = 1 - \frac{6}{125} \times \frac{27}{2}$ $P(X > 3) = \frac{44}{125}$	
	$P(X > 3) = \frac{125}{125}$	
Q26a	$h_{min} = 14 - 8$ $h_{min} = 6 \text{ metres}$	1 Mark Correct solution
Q26b	$14 + 8\sin\left(\frac{\pi t}{12}\right) = 10$	2 Marks Correct solution
	$8\sin\left(\frac{\pi t}{12}\right) = -4$	1 Mark
	$\sin\left(\frac{\pi t}{12}\right) = -\frac{1}{2}$	Finds
	\1_1/	$\frac{\pi t}{12} = \frac{7\pi}{6}, \frac{11\pi}{6}$
	$\frac{\pi t}{12} = \pi + \frac{\pi}{6}, \ 2\pi - \frac{\pi}{6}$	Or
	$\frac{\pi t}{12} = \frac{7\pi}{6}, \frac{11\pi}{6}$ $t = 14,22$	One correct value of t
Q27a	$y = x^3 - x^2 - x + 6$	3 Marks
	dy	Correct solution
	$\frac{dy}{dx} = 3x^2 - 2x - 1$	2 Marks
	$3x^2 - 2x - 1 = 0$ $(3x + 1)(x - 1) = 0$	Finds both stationery
	$(3x+1)(x-1) = 0$ $x = -\frac{1}{3}, x = 1$	points
	$x = -\frac{1}{3}, \ x = 1$ $y = \frac{167}{27}, \ y = 5$	1 Mark Finds the correct x values for the turning points
	$\frac{d^2y}{dx^2} = 6x - 2$	
	at $x = -\frac{1}{3}$, $\frac{d^2y}{dx^2} = 6 \times -\frac{1}{3} - 2 = -4 < 0$	
	$at x = 1$, $\frac{d^2y}{dx^2} = 6 \times 1 - 2 = 4 > 0$	
	$\therefore \left(-\frac{1}{3}, \frac{167}{27}\right) \text{ is a max turning point, } (1,5) \text{ is a min turning point}$	

	1 -2	
Q27b	$\frac{d^2y}{dx^2} = 6x - 2$ $6x - 2 = 0$ $x = \frac{1}{3}$ $y = \left(\frac{1}{3}\right)^3 - \left(\frac{1}{3}\right)^2 - \left(\frac{1}{3}\right) + 6 = \frac{151}{27}$ $\frac{x}{d^2y} - 2 \qquad 0 \qquad 4$ There is a change in concavity, therefore the point of inflection is $\left(\frac{1}{3}, \frac{151}{27}\right)$	1 Mark Correct solution
Q27c	x = -3, f(-3) = -27 x = 3, f(3) = 21	2 Marks Correct solution
	$y ext{ intercept, } f(0) = 6$	1 Mark Correct curve with some key features shown
	(3, 21)	
	15	
	(-1/3, 167/27) $(0, 6)$ $(1/3, 16/27)$	
	5 (1, 5)	
	-3 -8/3 -7/3 -2 -6/3 -4/3 -1 -2/3 -1/3 1/3 2/3 1 4/3 5/3 2 7/3 8/3 3	
	-5	
	-10	
	-15	
	-20	
	-25	
Q27d	Decreasing and concaving up	1 Mark Correct solution
	$\left \frac{1}{3} < x < 1 \right $	
Q28a	$W_0 = 50$ $W = 50e^{-kt}$	2 Marks Correct solution
	$ \begin{aligned} t &= 2, W = 40 \\ 40 &= 50e^{-2k} \end{aligned} $	1 Mark Shows $40 = 50e^{-2k}$
	$\frac{4}{5} = e^{-2k}$	
	$\ln\frac{4}{5} = -2k$ $k = -\frac{1}{2}\ln\frac{4}{5}$	
	$k = -\frac{1}{2}\ln\frac{4}{5}$	
	<u> </u>	<u> </u>

Q28b	t = 10	2 Marks
Q200	$W = 50e^{-10 \times -\frac{1}{2} \ln \frac{4}{5}}$	Correct solution
	W = 50e 2.5 W = 16.384	
	16.384 litres of water are in the tank.	1 Mark
		Finds $W = 16.384$
	50 - 16.384 = 33.616	
	∴ 34 litres of water has been released.	
	_	
Q29a	$A\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$	1 Mark
		Correct solution
	Sub the x value into $y = \sin x$ and $y = \sqrt{3}\cos x$	
	$y = \sin\frac{\pi}{2} \qquad \qquad y = \sqrt{3}\cos\frac{\pi}{2}$	
	$y = \sin\frac{\pi}{3} \qquad y = \sqrt{3}\cos\frac{\pi}{3}$ $y = \frac{\sqrt{3}}{2} \qquad y = \frac{\sqrt{3}}{2}$	
	$y = \frac{\sqrt{3}}{2}$ $y = \frac{\sqrt{3}}{2}$	
	Same \hat{y} value obtained, therefore \hat{A} is the one of the points of	
	intersection of these two functions.	
0201	 	4.84
Q29b	$\sin x = \sqrt{3}\cos x$	1 Mark Correct solution
	$ \tan x = \sqrt{3} \\ \pi \qquad \pi $	Correct solution
	$x = \frac{\pi}{3}, \pi + \frac{\pi}{3}$	
	$x = \frac{\pi}{3}, \frac{4\pi}{3}$	
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	4	
	$y = \sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$	
	5 2	
	$B\left(\frac{4\pi}{3},-\frac{\sqrt{3}}{2}\right)$	
Q29c	$c\frac{4\pi}{2}$	3 Marks
	$A = \int_{\pi}^{\frac{\pi}{3}} (\sin x - \sqrt{3}\cos x) dx$	Correct solution
	$\frac{\sqrt{3}}{3}$	
	$A = \left[-\cos x - \sqrt{3}\sin x\right]_{\frac{\pi}{3}}^{\frac{4\pi}{3}}$	2 Marks
	$\frac{1}{3}$	Correct primitive function
	$A = \left(-\cos\frac{4\pi}{3} - \sqrt{3}\sin\frac{4\pi}{3}\right) - \left(-\cos\frac{\pi}{3} - \sqrt{3}\sin\frac{\pi}{3}\right)$	Tunction
		1 Mark
	$A = \left(\frac{1}{2} + \sqrt{3} \times \frac{\sqrt{3}}{2}\right) - \left(-\frac{1}{2} - \sqrt{3} \times \frac{\sqrt{3}}{2}\right)$	Shows area is
	$A = \left(\frac{1}{2} + 3\right) - \left(-\frac{1}{2} - 3\right)$	$\int_{\underline{\pi}}^{\frac{4\pi}{3}} (\sin x - \sqrt{3}\cos x) dx$
		$\int_{\frac{\pi}{3}} (\sin x - \sqrt{3} \cos x) dx$
	$A = 4 \text{ units}^2$	
Q30a	$y - 2t - 3\log(t + 1)$	1 Mark
Q50a	$x = 2t - 3\log_e(t+1)$	Correct solution
	$v = 2 - \frac{3}{t+1}$	correct solution
Q30b	$v = 2 - 3(t+1)^{-1}$	2 Marks
	$a = 3(t+1)^{-2}$	Correct solution
	$a = 3(t+1)^{-2}$ $a = \frac{3}{(t+1)^2}$	1 Mark
		Correct acceleration
	Initial acceleration when $t=0$	equation
	$a = \frac{3}{(0+1)^2} = 3 m/s^2$	
	$\int_{0}^{\infty} (0+1)^{2} = 3 \text{m/s}$	

Q30c	Particle at rest when $v = 0$ $2 - \frac{3}{t+1} = 0$ $\frac{3}{t+1} = 0$	2 Marks
	$\begin{vmatrix} 2 & 3 \\ -1 & 3 \end{vmatrix}$	Correct solution
	$\left \frac{z-t-1}{t+1} - 0 \right $	
	3 - 2	1 Mark
	$t+1^{-2}$	Shows
	$t+1=\frac{3}{2}$	$2 - \frac{3}{t+1} = 0$
	$l+1=\frac{1}{2}$	$2 - \frac{1}{t+1} = 0$
	$t = \frac{1}{2} s$	
	$t = \frac{1}{2}s$	
Q30d	t=3	2 Marks
	$x = 2 \times 3 - 3\log_e(3+1)$	Correct solution
	$x = 6 - 3\log_e 4$	
	x = 1.841116	1 Mark
	<i>N</i> 1.011110	
	1	Finds
	$t = \frac{1}{2}$	$x = 6 - 3\log_e 4$
	2 1 /1 \	
	$x = 2 \times \frac{1}{2} - 3\log_e\left(\frac{1}{2} + 1\right)$	
	2 2 (2)	
	$x = 1 - 3\log_e \frac{3}{2}$	
	x = -0.216395	
	$x = -0.210395 \dots$	
	x /	
	1.5	
	1	
	0.5	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	-0.5	
	Total distance travelled is	
	$(6-3\log_e 4)+2\left 1-3\log_e \frac{3}{2}\right $	
	= 2.273907	
	$= 2.273907 \dots$ $\approx 2.2739 m$	
	≈ 2.2739 m	
	J , 1 ,	
Q31a	$\frac{d}{dx} \left(\frac{1}{\sin x} \right)$ $= \frac{d}{dx} (\sin x)^{-1}$	2 Marks
	$dx \sin x$	Correct solution
	$=\frac{d}{dr}(\sin r)^{-1}$	
	$dx^{(SHIR)}$	1 Mark
	$ = -1 \times \cos x \times (\sin x)^{-2}$	Correct differentiation
	$= -\frac{\cos x}{\sin x} \times \frac{1}{\sin x}$	
	$\sin x$ $\sin x$	
	$=-\cot x \csc x$	
Q31b	$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cot x \csc x dx$ $\begin{bmatrix} 1 & \end{bmatrix}^{\frac{\pi}{2}}$	2 Marks
	$\int_{\pi}^{\infty} \cot x \csc x dx$	Correct solution
	$\int \frac{J_1^{\mu}}{3}$	
	$= \left[-\frac{1}{\sin x} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$	1 Mark
	$=\left -\frac{1}{2(1+\epsilon)}\right _{\pi}^{2}$	Correct primitive
	$L \sin x \frac{1}{3}$	function
		Turiction
	$= -\left[\frac{1}{\sin\frac{\pi}{2}} - \frac{1}{\sin\frac{\pi}{3}}\right]$	
	$\left \sin\frac{\pi}{2} \sin\frac{\pi}{2}\right $	
	$ = - 1 - \frac{2}{\sqrt{5}} $	
	L √31	
	$= -\left[1 - \frac{2}{\sqrt{3}}\right]$ $= \frac{2}{\sqrt{3}} - 1$	
	$\sqrt{3}$	

Q32a	$\Delta ABC \Delta EDC $ (equiangular)	1 Mark
	$\frac{EC}{AC} = \frac{ED}{AB}$ $\frac{9-r}{9} = \frac{h}{25}$ $h = \frac{25(9-r)}{9}$	Correct solution
Q32b	$V = \pi r^2 h$	1 Mark
	$V = \pi r^2 \times \frac{25(9-r)}{9}$	Correct solution
	$V = \frac{25\pi}{9}(9r^2 - r^3)$	
Q32c	$dV = 25\pi$	3 Marks
	$\frac{dV}{dr} = \frac{25\pi}{9} (18r - 3r^2)$ $\frac{25\pi}{25\pi} (18r - 3r^2)$	Correct solution
	$\frac{25\pi}{9}(18r - 3r^2) = 0$	2 Marks
	$3r(6-r) = 0$ $r = 0 cm, \qquad r = 6 cm$	Shows $r = 6 cm$
		produces maximum volume
	If $r = 0$ cm , the cylinder doesn't exist.	
	$d^2V = 25\pi$	1 Mark
	$\frac{d^2V}{dr^2} = \frac{25\pi}{9}(18 - 6r)$	Obtains $r = 6 cm$
	At r = 6 cm	
	$\frac{d^2V}{dr^2} = \frac{25\pi}{9}(18 - 6 \times 6) = -50\pi < 0$	
	$\therefore r = 6$ produces maximum volume.	
	Maximum volume is	
	$V = \frac{25\pi}{9}(9 \times 6^2 - 6^3)$	
	$V = 300\pi cm^3$	